Linear algebra - long test - solutions

Problem 1. Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 1 \\
5 & 2 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

Find the matrix $A^{-1} B$.

Solution I. First, we find A^{-1} by Gaussian elimination:

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
5 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|ccc}
2 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & -2 & -3 & 1
\end{array}\right] \rightarrow } \\
\rightarrow & {\left[\begin{array}{lll|lll}
0 & 1 & 0 & 5 & 6 & -2 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & -2 & -3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & -3 & 1 \\
0 & 1 & 0 & 5 & 6 & -2 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] . }
\end{aligned}
$$

Thus,

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
5 & 6 & -2 \\
0 & 1 & 0
\end{array}\right], A^{-1} B=\left[\begin{array}{ccc}
-2 & -3 & 1 \\
5 & 6 & -2 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 3 & 2 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-5 & -7 & -4 \\
12 & 17 & 10 \\
1 & 1 & 1
\end{array}\right] .
$$

Solution II. (don't read it if you haven't mastered the first method) It is possible to find $A^{-1} B$ without computing A^{-1}. To this end, we solve the system

$$
\left[\begin{array}{lll|lll}
2 & 1 & 0 & 2 & 3 & 2 \\
0 & 0 & 1 & 1 & 1 & 1 \\
5 & 2 & 3 & 2 & 2 & 3
\end{array}\right]
$$

with A on the left and B on the right. Performing Gaussian elimination, we arrive at

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & -7 & -4 \\
0 & 1 & 0 & 12 & 17 & 10 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

with I on the left and $A^{-1} B$ on the right.
This requires some justification. Recall that in each step of Gaussian elimination, both matrices get multiplied from the left by some other matrix (matrix of elementary operation). At the end, we have $E \cdot A$ on the left and $E \cdot B$ on the right. But since $E \cdot A=I$, we necessarily have $E=A^{-1}$ and so we have our answer on the right.

Problem 2. Let $\mathcal{A}=\{(2,0,5),(1,0,2),(0,1,3)\}$ and $\mathcal{B}=\{(2,1,2),(3,1,2),(2,1,3)\}$ be two bases of \mathbb{R}^{3}, and let \mathcal{C} be a basis of \mathbb{R}^{2}. The linear map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by the matrix

$$
[\varphi]_{\mathcal{A}}^{\mathcal{C}}=\left[\begin{array}{lll}
2 & 1 & 0 \\
3 & 0 & 3
\end{array}\right] .
$$

- Write a formula for the matrix $[\varphi]_{\mathcal{B}}^{\mathcal{C}}$ in terms of some of the matrices $[\varphi]_{\mathcal{A}}^{\mathcal{C}},[\mathrm{id}]_{\mathrm{st}}^{\mathcal{A}}$, $\left.[\mathrm{id}]_{\mathcal{A}}^{\mathrm{st}},[\mathrm{id}]\right]_{\mathrm{st}}^{\mathcal{B}},[\mathrm{id}]_{\mathcal{B}}^{s \mathrm{st}}$. Hint. Consider the composition $\varphi \circ \mathrm{id} \circ \mathrm{id}$.
- Find the matrix $[\varphi]_{\mathcal{B}}^{\mathcal{C}}$. If you wish, you may do it without the formula required above.

Using the formula for the composition $\varphi \circ \mathrm{id} \circ \mathrm{id}$ with bases $\mathcal{B}, \mathrm{st}, \mathcal{A}, \mathcal{C}$, we obtain:

$$
[\varphi]_{\mathcal{B}}^{\mathcal{C}}=[\varphi]_{\mathcal{A}}^{\mathcal{C}} \cdot[\mathrm{id}]_{\mathrm{st}}^{\mathcal{A}} \cdot[\mathrm{id}]_{\mathcal{B}}^{\mathrm{st}} .
$$

To find $[\varphi]_{\mathcal{B}}^{\mathcal{C}}$, we will need $[\mathrm{id}]_{\text {st }}^{\mathcal{A}}$ and $[\mathrm{id}]_{\mathcal{B}}^{\text {st }}$. To obtain $[\mathrm{id}]_{\mathcal{B}}^{\text {st }}$, we put the vectors from the basis \mathcal{B} as columns; let us observe that this gives us the matrix B from the previous problem. Similarly, $[\mathrm{id}]_{\mathcal{A}}^{\mathrm{st}}$ is equal to A, and $[\mathrm{id}]_{\mathrm{st}}^{\mathcal{A}}$ is its inverse, A^{-1}. Employing the calculations from the previous problem and using the formula above, we have

$$
\begin{gathered}
{[\mathrm{id}]_{\mathrm{st}}^{\mathcal{A}} \cdot[\mathrm{id}]_{\mathcal{B}}^{\mathrm{s}}=A^{-1} \cdot B=\left[\begin{array}{ccc}
-5 & -7 & -4 \\
12 & 17 & 10 \\
1 & 1 & 1
\end{array}\right],} \\
{[\varphi]_{\mathcal{B}}^{\mathcal{C}}=\left[\begin{array}{lll}
2 & 1 & 0 \\
3 & 0 & 3
\end{array}\right] \cdot\left[\begin{array}{ccc}
-5 & -7 & -4 \\
12 & 17 & 10 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & 2 \\
-12 & -18 & -9
\end{array}\right] .}
\end{gathered}
$$

Problem 3. Compute the determinants:

$$
\operatorname{det}\left[\begin{array}{cccc}
-5 & -7 & 3 & 3 \\
3 & 4 & 0 & 0 \\
1 & -3 & 1 & 0 \\
0 & 2 & 1 & 1
\end{array}\right], \quad \operatorname{det}\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

To compute the first determinant, we substract the 4 th column from the 3rd, use the Laplace expansion with respect to the 3 rd column, then subtract 3 times the 3rd row from the 1st, use the Laplace expansion with respect to the 3rd column, and finally use the formula for 2×2 matrices.

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cccc}
-5 & -7 & 3 & 3 \\
3 & 4 & 0 & 0 \\
1 & -3 & 1 & 0 \\
0 & 2 & 1 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}
-5 & -7 & 0 & 3 \\
3 & 4 & 0 & 0 \\
1 & -3 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
-5 & -7 & 3 \\
3 & 4 & 0 \\
0 & 2 & 1
\end{array}\right] \\
=\operatorname{det}\left[\begin{array}{ccc}
-5 & -13 & 0 \\
3 & 4 & 0 \\
0 & 2 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
-5 & -13 \\
3 & 4
\end{array}\right]=(-5) \cdot 4-(-13) \cdot 3=-20+39=19
\end{aligned}
$$

Each time we use the Laplace expansion, there is only one nonzero element in the column. Luckily, it equals 1 and the sign is positive, so the calculations are more tidy than usual.

For the second determinant, we subtract 2 times the 2nd row from other rows, subtract these two rows from the 2nd row, swap rows to get an upper-triangular matrix, then use the formula for such matrices.

$$
\operatorname{det}\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=-\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=-(1 \cdot 1 \cdot 1)=-1
$$

